Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model
نویسندگان
چکیده
We present a multiscale agent-based non-small cell lung cancer model that consists of a 3D environment with which cancer cells interact while processing phenotypic changes. At the molecular level, transforming growth factor beta (TGFbeta) has been integrated into our previously developed in silico model as a second extrinsic input in addition to epidermal growth factor (EGF). The main aim of this study is to investigate how the effects of individual and combinatorial change in EGF and TGFbeta concentrations at the molecular level alter tumor growth dynamics on the multi-cellular level, specifically tumor volume and expansion rate. Our simulation results show that separate EGF and TGFbeta fluctuations trigger competing multi-cellular phenotypes, yet synchronous EGF and TGFbeta signaling yields a spatially more aggressive tumor that overall exhibits an EGF-driven phenotype. By altering EGF and TGFbeta concentration levels simultaneously and asynchronously, we discovered a particular region of EGF-TGFbeta profiles that ensures phenotypic stability of the tumor system. Within this region, concentration changes in EGF and TGFbeta do not impact the resulting multi-cellular response substantially, while outside these concentration ranges, a change at the molecular level will substantially alter either tumor volume or tumor expansion rate, or both. By evaluating tumor growth dynamics across different scales, we show that, under certain conditions, therapeutic targeting of only one signaling pathway may be insufficient. Potential implications of these in silico results for future clinico-pharmacological applications are discussed.
منابع مشابه
The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model
Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملIdentification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Resampling, and ANOVA
To date, parameters defining biological properties in multiscale disease models are commonly obtained from a variety of sources. It is thus important to examine the influence of parameter perturbations on system behavior, rather than to limit the model to a specific set of parameters. Such sensitivity analysis can be used to investigate how changes in input parameters affect model outputs. Howe...
متن کاملSentinel Node Mapping in Non-small Cell Lung Cancer Using an Intraoperative Radiotracer Technique
Objective(s): Lymph node metastases are the most significant prognostic factor in localized non-small cell lung cancer (NSCLC). Identification of the first nodal drainage site (sentinel node) may improve detection of metastatic nodes. Extended surgeries, such as lobectomy or pneumonectomy with lymph node dissection, are among the therapeutic options of higher acceptab...
متن کاملPreparation and in-vitro Evaluation of an Antisense-containing Cationic Liposome against Non-small Cell Lung Cancer: a Comparative Preparation Study
The current methods for treatment of cancers are inadequate and more specific methods such as gene therapy are in progress. Among different vehicles, cationic liposomes are frequently used for delivery of genetic material. This investigation aims to prepare and optimize DOTAP cationic liposomes containing an antisense oligonuclotide (AsODN) against protein kinase C alpha in non-small cells lung...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 25 18 شماره
صفحات -
تاریخ انتشار 2009